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The long answer is: no one is sure. But the short an-
swer is straightforward: a quasicrystal is a crystal
with forbidden symmetry. Forbidden, that is, by “The
Crystallographic Restriction”, a theorem that confines
the rotational symmetries of translation lattices in two-
and three-dimensional Euclidean space to orders 2, 3,
4, and 6. This bedrock of theoretical solid-state sci-
ence—the impossibility of five-fold symmetry in crys-
tals can be traced, in the mineralogical literature, back
to 1801—crumbled in 1984 when Dany Shechtman, a
materials scientist working at what is now the National
Institute of Standards and Technology, synthesized
aluminium-manganese crystals with icosahedral sym-
metry. The term “quasicrystal”, hastily coined to label
such theretofore unthinkable objects, suggests the
confusions that Shechtman’s discovery sowed. What’s
“quasi” about them? Are they sort-of-but-not-quite
crystals? Solids with some sort of quasiperiodic struc-
tures? For that matter, what is a crystal?

Since the discovery of x-ray diffraction in 1912, a
crystal’s identifying signature has been sharp bright
spots in its diffraction pattern; that’s how Shecht-
man knew his were special. If it looks like a duck and
quacks like a duck, it’s a duck: charged in 1992 with
formulating a suitably inclusive definition, the Inter-
national Union for Crystallography’s newly-formed
Commission on Aperiodic Crystals decreed a crystal
to be “any solid having an essentially discrete dif-
fraction diagram.” In the special case that “three di-
mensional lattice periodicity can be considered to be
absent,” the crystal is aperiodic (http://www.iucr.
org/iucr-top/iucr/cac.html).

I was a member of the commission when this defi-
nition was hammered out, and I argued strongly in
favor of it. It wasn’t a cop-out; it was designed to stim-
ulate research. Which atomic structures or, more ab-
stractly, point sets, have essentially discrete diffraction

diagrams? The set of vertices of a Penrose tiling does—
that was known before Shechtman’s discovery. But
what other objects do, and how can we tell? The ques-
tion was wide open at that time, and I thought it un-
wise to replace one inadequate definition (the lattice)
with another. That the commission still retains this
definition today suggests the difficulty of the ques-
tion we deliberately but implicitly posed. By now a
great many kinds of aperiodic crystals have been
grown in laboratories around the world; most of them
are metals, alloys of two or three kinds of atoms—bi-
nary or ternary metallic phases. None of their struc-
tures has been “solved”. (For a survey of current re-
search on real aperiodic crystals see, for example, the
website of the international conference ICQ9,
http://www.icq9.ameslab.gov/index.html/.)

And what have we learned about point set crystals?
Let Λ be a discrete, countably infinite point set in Rn
and µΛ the tempered distribution Σx∈Λδx. µΛ is a
Dirac comb, N. G. de Bruijn’s apt name for any weighted
sum of Dirac deltas Σw∈Λ′c(w )δw , where Λ′ is dis-
crete. Whether Λ “diffracts” depends on the relative,
not absolute, positions of its points, so we are less in-
terested in Λ itself than in the interpoint differences
x− y ∈ Λ−Λ and in the convolution (autocorrela-
tion) measure γΛ , a Dirac comb Σy∈Λ−Λc(y)δy with
nonnegative weights. The diffraction measure of Λ is
the Fourier transform γ̂Λ . In general, γ̂Λ is a sum of
a Dirac comb γ̂discrete and continuous components.
The diffraction diagram of Λ is a plot of γ̂Λ ; it is “es-
sentially discrete” if γ̂discrete is nontrivial, that is, if
it has relatively dense support. (A set is relatively
dense in Rn if its intersection with every ball of some
fixed, sufficiently large, radius is nonempty.) If
γ̂Λ = γ̂discrete, then Λ is a pure point crystal. A lat-
tice L is the simplest pure point crystal: L− L = L and,
by the Poisson summation formula, γ̂L = γ̂discrete =
Σx∈L∗δx , where L∗ is the lattice dual to L, {y ∈ Rn,
exp 2πiyẋ = 1,∀x ∈ L} .

So far, so good, but we want to characterize crys-
tals by local (geometrical) criteria, and this definition
neither supplies nor implies them. In fact, some crys-
tals are counterintuitive. We expect a point set crys-
tal Λ to be, if not a lattice, then relatively dense. For
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example, the set of “visible points”
(points with relatively prime coordi-
nates) in the plane, which has “holes”
of arbitrarily large radii, should not be
a crystal. But it is, and pure point no
less (note that Λ−Λ is the integer lat-
tice). On the other hand, some point
sets that “ought” to be crystals are
not. Consider the famous pinwheel
tiling ([1], [3]) with congruent right
triangles tiles. Like the Penrose tilings
and many other aperiodic tilings (see
the online “encyclopedia”, http://
saturn.math.uni-bielefeld.de),
the pinwheel tiling is a substitution
tiling, generated by a straightforward
two-step process, decomposition and
inflation. But, unlike tile edges in a
Penrose tiling, the triangles’ edges are
aligned in a countable infinity of directions, so Λ−Λ
is not discrete.

Some large classes of aperiodic crystals do conform
to our intuitive notions. Loosely speaking, point sets
derived from lattices inherit a crystalline structure in
modified form. If, like the set of visible points, Λ is
a subset of a lattice L, then so is Λ−Λ and γ̂Λ is a
weighted sum of deltas at points of L∗ . We can con-
struct a wide class of crystals Λ , the Penrose tiling ver-
tices among them, from higher-dimensional lattices
by the powerful and versatile cut-and-project method.
Every cut-and-project set Λ is discrete, relatively
dense, and a pure point crystal.

Cut-and-project sets are a special case of a large
and general family of point sets called Meyer sets,
which top a hierarchy of order types. Λ is a Delone
set if it is uniformly discrete and relatively dense in
Rn . A Delone set is of finite type if it has a finite num-
ber (finite atlas) of local patterns of every radius, up
to translation. (Equivalently, Λ is of finite type if the
difference set Λ−Λ of interpoint vectors is closed and
discrete.) A Meyer set Λ is a set of finite type where
Λ−Λ is Delone. Meyer sets are always crystals,
though not necessarily pure point. They can be char-
acterized in many ways; here is another: Meyer sets
are almost-lattices. That is, Λ is a Meyer set if
and only if, for every ε > 0 , its ε -dual
Λε := {y ∈ Rn, | exp 2πiyx− 1| < ε, ∀x ∈ L} is
relatively dense.

But shouldn’t repetitivity (“quasiperiodicity”) be
the local criterion we are looking for? I expect, when
all is said and done, it will be, but its role is not yet
clear. A Delone set Λ of finite type is repetitive if, for
every T > 0, all local patterns of radius T are relatively
dense [2]. The rate of growth, with increasing T, of the
size of Λ ’s atlas of local patterns is a useful measure
of its complexity. For example, if the growth function
is bounded, then Λ is a lattice. One expects the dif-
fraction condition to be characterized by some big-O
condition on T. However, repetitivity lies somewhat
outside the hierarchy sketched above: all repetitive De-
lone sets are of finite type, but not all repetitive sets
are Meyer, and not all Meyer sets are repetitive. If a

repetitive set is Meyer, then it’s a crystal since all
Meyer sets are. But if it’s a crystal, is it Meyer?

Meanwhile the burgeoning mathematical field of
long-range aperiodic order and the experimental study
of real aperiodic crystals are symbiotic and mutually
stimulating. Their cross-fertilization has been more
metaphorical than practical, but no less valuable for
that. Penrose tilings, the Drosophila of aperiodic order,
don’t tell us what the structures of real aperiodic
crystals are, but they do tell us what aperiodic order
can look like. (Still, we are missing something. For 
suitable choices of lattice, dimension, and other pa-
rameters, we get cut-and-project sets with (diffraction)
rotational symmetry of any finite order. Yet the sym-
metries of real aperiodic crystals found so far are
only pentagonal, decagonal, dodecagonal, and icosa-
hedral. Evidently, the real crystallographic restriction
is yet to be discovered.)

Reciprocally, structure studies of real crystals sug-
gest that coverings by clusters may be more useful
models than packings and tilings. The Penrose tilings’
nonlocal growth (despite local matching rules) raises—
but does not answer—questions about how crystals
really grow. And recent experiments suggest that real
crystal growth may be partly nonlocal too [4].

Stay tuned.
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Figure 1. (a). A patch of a Penrose tiling. (b). The diffraction diagram of the
vertex set V of (a) is essentially discrete; thus F is an aperiodic crystal,
according to the new definition.
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